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In this report we derive the solution of the * -minimal weighted

sensitivity problem with 1 pole/l zero sensitivity weighting functions

L e ”’. J."_v

for stable minimum phase rational plants with an input delay. We calcu-

:{ late the explicit feedback compensator and analyze its stability.
?: Although we have a technique for approximating these compensators with

proper compensators, the full description of this, along with an analy-
: sis of stability robustness will appear in a future report. Another
.: report will also cover generalizations of this work to plants which are ’-;
2 &

unstable, to plants which have right half plane zeros, and to the case
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.

'y 'r
N
NP

¥ AT
Je Lo e
AN
I
. ' .
- v
— at *,

‘

Al
RSN
’
B

o [ 2
Preface.
. R
- ifi‘
- The results presented here expand upon the work initiated in Appen- -':.‘-;_2

o

dix B of [Flamm 1985a].

‘
.
.
»
m,

: i
e

Purpose of Research. ‘_-_'.j::l:
The goal of this work {s to obtain and analyze explicit compensa- :;‘_.-}::

3 tors for delay systems which achieve or approximate a closed loop sensi- - J
. o
- tivity function minimal in the % -norm. A major premise of this inves- F
tigation is that all real systems contain delays, so that it is "

T
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only by examining the optimum for such systems that an understanding of
achievable performance can be obtained.

We shall also examine the robustness of the stability of 1w-opt1ma1
sensitivity compensators with respect to changes in the delay present in
the plant. We show below with a simple example that Zp-minimal sensici-
vity feedback systems are not necessarily robustly stable with respect

to the addition of a small delay in the feedback loop. This means that

there is something wrong with the % sensitivity problem as commonly Rl

treated. As a consequence of this lack of robustness, the resulting iffj
feedback system is ill-posed in the sense of [Willems 1971] pp. 90-91. ?i

We remark here that the ill-posedness for the feedback system seems .ii
to be a result of the memoryless part of the opened feedback loop having ;i;;

gain which is too large. See [Willems 1971] p. 100. From this point of
view a strictly proper approximation to the optimal compensator for an

% problem for a rational transfer function plant will likely result in
a well-posed system. Nonetheless, it is troublesome to use the formula-

tion of a problem for which the ideal solution is ill-posed.

For plants with a delay in the input, which we shall consider in
this report, the optimal feedback systems will be well-posed, according
to [Willems 1971] Corollary 4.1.1, precisely because of the delay in the
plant. (This conclusion depends upon the nature of the optimal compen-
sators for these systems. We examine this later for the case treated in
this report, and see that, although these compensators are unstable, and
in fact have infinitely many poles in the right half plane, they are not
anticipative.)

We also intend to test the conjecture that designs for systems con

November 22, 1985 Page 2

T Vel . e e e e e e . . m e L e e ee e
PO St At e e rm e [ R L A A S
LA AN, W AT A S RSN S SR YRR VLY ALY 'z"'n.‘\':':.-\ ke




PYv
' taining delays will provide a means of obtaining compensators which are {:‘:}
“‘ | robust for high frequency phase uncertainty, such as that resulting from é-:::
& right half plane zeros of the plant for which the designer of the com- ; :
E pensator {s uncertain of the location. :E::'E}:
:‘ We note that in the example used below to illustrate the ;‘E’p
r ill-posedness of the % optimal feedback system for the purely rational ‘:'
:E plant, [Zames and Francis 1983] p. 592 SVI.A, remark that the optimal _‘
; “Q" parameter is a lead filter. Since this has a certain intuitive E:
i appeal (which those authors suggest). we would like to examine how this i

: may extend to the case of delay plants. In particular, we are led to ::;::::'

ask, in what manner can we look at the delay in terms of right half

plane zeros: for example, as infinitely many zeros at the point «?
_ Finally, we hope to provide conceptual insight into the reason ~.
delays limit the sensitivity of a compensated system. \
- Ve also regard the delay problems considered here as a first step "...:
towards considering similar design issues for other infinite dimensional ::;::.:
plants. :'-\'
N
An Example of Ill-posedness of the * -minimal Sensitivity Feedback \.EE
: System for a Rational Plant. ~.
The importance of understanding tn—mininal sensitivity design for
J delay systems is emphasized by the fact that designs which achieve
!a-minimal sensitivity for finite dimensional systems are not generally F
- stable when a small delay is added.! We 1llustrace this fact with a
-‘-?
Lhis point was suggested by Gunter Stein.
\ November 22, 1985 Page 3
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simple example.

YN | | Y
Y =l

In [Zames and Francis 1983, p. 593] the solution to the % -minimal

, sensitivity problem is computed for the case of a stable plant with two [_\-.
-
-.'.4:'
. right half plane zeros. We consider this example here. Let -%,;
. b,-s)(b,-s | "y
Po = (b, +s) (bavs) P,. with Qe(bt)>0 and b,+b, € R, '_,;fvt
be the plant, where P, i{s stable and minimum phase, and let .‘;‘y
.‘ "h:
£ W=l yih B>0 ' N
5 s+ ' e
-:f-_ be the sensitivity weighting function. The optimal "Q"” parameter is -:-::
] as) = [1 - DAess) 7. buss)(bats) p - |
. s) = [ - §re)(cea)d " Br-s)(bas) T
:::' where D and c are constants determined by f and the bts. D may be posi- _ :{,.'.:'_:
j: tive or negative, depending on whether 8 > 1 or 8 < 1. (We will not :::::'::
PN
\,i show it here, but B < 1 is the only interesting case.) We assume D is
:? positive, for B < 1. Then the optimal feedback compensator is ;ZE-:::.
N ~ o~ o
v F = Q(1-PQ)-1. 2
_l Now suppose that the true plant is really P(s) = e-esPo(s). with -
l:E: €>0. We check stability for the closed loop system with true plant and -_
> compensator designed for the nominal plant P by computing % and :'.E:-F.‘
' '-_-\‘
. checking the location of its poles. A straightforward computation gives .
" P e5“D(c-s)
= IPF "7 o%€p(c-s) + [W(s)(c*s)-D(c-s)] 3
-i We now show that this i{s unstable by showing that the denominator, call
T it M(s), in the above expression has infinitely many right half plane f:fi'_?}_
* zeros. i o
:,- (.t
i For this we evaluate M(s) on the imaginary axis and separate it \-
-:' into real and imaginary parts, M(tw) = F(w) + t*G(w). Now we show that _‘
e
::: F(w) has only finitely many real zeros, and conclude by appealing to -:::
- A
5’ [Pontryagin 1955], Theorems 3 and 6, that D(s) has zeros in the right ;E;-"
;
- November 22, 1985 Page 4 S
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N half plane.

IV YL,

N . :
2 A computation gives

x o

F(w) = w?*D{cos(ew) - 2%13 + wD(B-c)sin(ew) + BcD{cos(ew)-1] + c.

Ez: Since D > 0, this equation cannot be satisfied for sufficiently large w,
;: and we conclude that F(w) has only finitely many real zeros. Therefore,
o D(s) has zeros in the right half plane.

"

!l We consider the % optimal sensitivity control problem formulated
E' in [Zames 1981], but with plants of the form P(s) = A(s)+e-SAB(s). where
i? A and B are proper rational functions, and A>0. The block diagram in
F! Figure 1 shows the feedback system we are considering.

3 d

o u_to e 5l + Yy
!. "‘*T_ g L5 s
- Fl

Figure 1. Feedback system considered.

The problem is to minimize the %~ norm of the weighted closed loop

;jf sensitivity, X(s) = W(s)[1+P(s)F(s)] ! over all stabilizing feedbacks :;if
K F(s). E‘Jﬂ
.;' In this work we consider only weighting functions which are ratio- ;ﬁq
;;: nal and bounded away from zero at ¢.2 The reason for the rationality ;ft
» N l‘\J
ha ala
-y assumption is simple convenience, and the fact that nothing seems to be E—i’
o =)
L:.:- - L
i".f S

2The importance of this was suggested by Gunter Stein.

L A
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lost from this restriction. If, however, strictly proper weighting

Ei functions are considered, since the resulting optimal weighted sensiti-
i vities will be all-pass, the corresponding unweighted sensitivities will
S; be unbounded at ®. This would be an unacceptable design, were it really
gj to be used. As above for the question of ill-posedness, it could be

- argued that real implementations will use proper approximations to the
gz optimal compensators. Then the unweighted sensitivity will not only be

bounded at infinity, it will have value 1 there. However, since the

approximation techniques presented in the literature, [Zames and Francis

1983] and [Vidyasagar 1985], achieve sensitivity with norm arbitrarily
close to the optimal by approximating the optimal weighted sensitivity
to higher and higher frequencies, these techniques cause the unweighted ;~_

sensitivity to grow as the approximation improves. A trade-off would

then be required. Since bounded sensitivity is a real design con-
straint, which proper choice of non-strictly proper weighting function (-

accommodates, the use of such a weighting function seems to be the natu-

A I
PR
y 4

('}

ral way of providing the trade-off.

Our solution will start with a more narrow problem, and proceed

-

PR .7
rorE e

.| .
sy P

stepwise to generalize the solution. The sequence of problems to be g;d

‘., .:1

considered is: _E?i

P

L .i

A. A=0 and B {s minimum phase and stable, with sensitivity weighting e d

function W having one pole and one zero. (A=0 is the case of an RO

tnput delay.) R

B. W is any stable rational minimum phase weighting function. k:t#

C. B can have right half plane zeros. RO

D. B can be unstable. Zj;f

E. A is non-zero. o
November 22, 1985 Page 6
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Since the optimal compensator will in general be non-proper, we

also consider the problem

F. Approximation of the optimum compensator with proper ones.
As part of our solution, we will examine

G. The stability properties of the feedback compensators we obtain,
and

H. The robustness of stability of the resulting closed loop system

with respect to perturbation of the delay interval and pole/zero
locations of the plant.

In this report we discuss problem A, and the issues in F and G as

applied to A. Subsequent reports will cover the other problems.

Derivation of Optimal Sensitivity.

Tt

Formulation. The calculation of the optimum sensitivity for this ﬁ%ﬁg

case was first presented in Appendix B of [Flamm 1985a]. The following EJ #
-

re-derivation is presented in a form that lends itself to generalization 3
to the succeeding problems. o

The transformation of the problem to the form

L . ST P T
AP L
: B
‘ PRI L
LA Ve et e e e

a2 g

]

SRR

tnf IW(s) - yH(s)N, (1) L

Hex A

r ]

‘.v» \v‘

is standard. See, for example, [Zames and Francis 1983]. Here W(s) is 'f{j
the sensitivity weighting function and ¢ is the inner factor of the ij}i
plant. (We have assumed that the plant is stable, and that the weight- ;“zi

ing function is stable and minimum phase.) In problem A, W(s) = z;% and

V= e-SA. Note that we have normalized the weighting function so that

A‘.AAJ e

p

G Y s
e e MR
'.':‘- -,'.'._. LR
o e

November 22, 1985 Page 7

.
»
.
P

L
FRRRIEN PO

,,
/

et

A ta® .l‘ y

.....................
...........................

- - M c. . N - . . T et et e " . . . . -.\"-'-.
NPT W P U U TR T T DRSSP, Dy Dy . DUS IR I DA VAL DU U A WAy R

[




......
.....................

o, L L L,
2%a"a"aFa

its zero is at the point ~-1.

Our approach is based on [Sarason 1567], to which the reader is
referred for the mathematical justification of our work. Since we shall
deal with operators which are not compact, we cite Theorem 1 on page 179
in that paper for the general case. However, since we subsequently
establish that the particular operators in which we are most interested
have maximal vectors, it is really Proposition 5.1 on p. 188 that we
require. The work in this report i{s further substantially guided by the
whole of §7, pp. 191-194.

In order to follow [Sarason 1967], we view [W(s)-w(s)H(s)] as an
operator on 2. The compression of this operator to K = ¥° © y#° is
equal to the compression of W(s) on the same subspace. Call this latter
operator T = WKWIK. The infimum in (1) cannot be less than the operator
norm of T. Theorem 1 in [Sarason 1967] says that the desired infimum is

in fact equal to IITI.

Solution Technique. In order to calculate this norm, we first
characterize K = (wﬁz)l. Suppose f, h € L?(0,») and B denotes Laplace
transform, g = £(g). If f(s)€K. then

0 = (F(s).e Mh(s)) 2. for all hex?

%2
=<F(tu).e"“Aﬁ(tu)>Lz
= (f(t).h(t-A))Lz

by Parseval’'s theorem. Therefore f(t) = O a.e. [4,9). Conversely, if

F(t)€L? and supp(f)C[0.4]. then fe(yat®)t. Thus

K = (w*)L = (F:feL[0.#) and supp(f)C[0.A])

[l
ey
[
]
]
1
[7]
(=
|
X
o
N
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where "% denotes convolution. Accordingly, for fe€K,

- t
TF = 2[[u(t)-u(t-A)]J;w(t-?)f(r)df]. where w = £71(W).

-sd
1-
It is easy to see VK(WIK) = —:——*W(s)|x. So

NT, N

1-e -S4 l_e-sA
sup "T-*W(s)(-—s—'—*h)"z
he*

_-sA
==

sup H[w(t)*(u(t)-u(t-A))h(t)I(u(t)-u(t-4))lz

sup H(w(t)re(t))(u(t)-u(t=A))Il2
supp(2)C[0.4]
ela=1

sup (Jdlw(t)*E(t)lzdt)” = Vil
o

where V is the operator on L?(0,A) defined by

(VF)(t) = J:w(t—T)f(T)dT. (2)

A way to find this supremum is to use the facts that lIVI® = v
(via the definition of adjoint) and that p(V*V) = IV*VIl since V'V is
normal [Rudin 1973, p. 282]. Therefore WVl = p(V*V)%. If V is compact
we need only find the largest eigenvalue of V*V. but this will not be
the general case. However, since in our case YV is the identity plus a
compact operator, we have only slightly more complication: Since we
shall have V*V-I is compact, we know from Weyl's theorem that the spec-

trum of V”V and I differ only by eigenvalues. [Halmos 1967, pp. 92 &

November 22, 1985 Page O
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295]. Therefore, a(V'V) G o(V'V-I) U {1}.
Thus we can find the norm of T by finding the largest eigenvalue of
V'V. VWe do this is two steps:

e Compute V“V.

e Solve the eigenvalue/function problem for this operator by trans-
forming the eigenvalue-defining equation to a differential equa-
tion.

We note that the operator V is equivalent to T via the Laplace
transformation. In particular, there is a one-to-one correspondence
between eigenvectors, and the eigenvalues are the same. Furthermore,

compactness of V is equivalent to compactness of T.

Computation of V*V. V* is defined by (x.V*y) = (Vx,y), so we just

compute:

(Vx,y) = Jay(t)°(w(t)*x(t))dt [We have used the fact that
0 both w and y have their
support on [0,®).]

Using the fact that

w(t-1) = 5(t—7) + wo(t-71) = 6(t-T) + (I-B)-e-p(“f)

we then have

ﬁy(t)°(W(t)n(t))dt = J:y(g)o[J;wo(t-T)x(T)dT + Gtu’x(t)]dt

= de(t)'[(l-ﬁ)-e-pt°J¢eBT'x(T)dr + x(t)] dt
0 0

November 22, 1985 Page 10 o
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A
= -BTd pr, d -
[(J:y(f)e T)(J:e x(T) T)]O
t
r[f y(r)e PTar1-[ePlex(e)]eae + ry(t)x(t)dt
00 0
= JAx(t) y(T)wg(T-t)drdt - JAx(t)Jty(T)wo(r-t)det
0 0 0] 0

+ J:xu)[a(t)*y(t)]dt

JZX(t)[Jty(T)wo(T-t)dT + (Smy)(t)]de

(de(r)w(f-e)dr.x(t)>
t
and we conclude

vy = ry(r)w(r-t)df. (3)

t

Solution of eigenvalue problem. We want to solve

N3F = VVF = (Vo+5)*[(VotB)f]

= (VoVo + Vo + Vo + I)(F). (4)
Now let
y=Vf= J; w(t-T)f(T)dr for t€[0,A],
and let
z = V”y = Jf w(r-t)y(r)dr for t€[0,4].
November 22, 1985 Page 11
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.Bt
Since w(t) = 5& + (1-B)+*e , we can take

-Bex: + f
(1-B)*xs + F

Bexz - (1-B)-y

x2 +y

dc **
y

d

dc *2

4

as a state space model for V'V valid on [0.A].

Boundary conditions are given by y(0) = f(0) and z(4) = y(4). This
is equivalent to x1(0) = O and x2(4) = 0 (if B # 1: we see later that
this is no restriction).

More concisely,

x=| P Olx+[!]r 5a
. [—(1-5)’ p] “ [ =
z=[1-f 1]x+ f (5b)
NC)
with 0 = [’;ng;]. | (5¢)

Now we set z = A%f in order to find the eigenfunctions and eigen-

values of V*V. Then

(A*-1)F = [1-p 1]-x (6)
replaces (5b).
Differentiating this we get

(A3-1)f = [1-B 1]°x

cwn {7, g

=[1-p 13- P Olx (7)
-(1-8)* B
Differentiating again, we get

November 22, 1985 Page 12

2

o

Y
.
L3

s
»

8\
SLPPNF

B

1)
L

v.."r—-‘

[
’ 'J“' =)

“¥ T
(A
NANRM

.
’

v 3 ¥ '"4
.‘ -. 1"‘ T
PRI R R R

1

)

i
4




L AR M SO MR EAGA AL AR A SR S BRI i bR Bl St e ROt Stagiate St it sl Sad AR g T s d B B Ao A A4 4 i 4

2 s -p 0 -B 0 1
(A2-1)F = [1-B 1]+ . ex + |2 foF
[—(l-n)’ n] [[-(1—:3)2 ﬁ] [" 1] ]
= [1-B 1]-[ -+ °]-x+ [1-8 1]-[ P °]-[@11]-f
-(1-8)* B -(1-8)* B

B2 o0 -B 0 1
= [1-p 1] x+ [1-p 1] “lg-1]°F
[o B’] g [—(I-B)’ B] [" ‘]

= B*(z-f) + (B*-1)f
= B2 (N3-1)+F - F + B*F
= (B3A\% - 1)-f.

If A2 =1 then (B?-1)f =0 implles f =0 or B> =1. This latter
case implies B = £1, and then our frequency domain weighting function
must be W(s) = EE% or W(s) = 1. These are of no interest since we only
allow weighting functions which are non-constant and outer. Thus we can

assume that A? # 1, and we get

(1] 2 z‘
F=E2cly ©)
A%-1

Boundary conditions follow from (5c). (6) and (7):
(A*-1)+F(4) = [1-B 1]-x(4)
= (1-B)x.(4)
= (1-p)-J:e'B(A")f(r)dr

(A-1)F(0) = [-2(1-8)* BJ-x(0)
= Box,(0)
= B+(A3-1)-f(0).

Thus f(4) = 18 Jde-ﬁ(A-T)f(T)dT (92)
A%-1 Y0
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RS

and £(0) = BF(0). (Sb)

R
PR LS

L
>
L]

Now it appears that we could have
242_ 233_ 2,2
(1) B2 o, (11) BE2=L 5 0 or (111) B2 ¢ 0.
A%-1 A%-1 A%-1

L4

N We consider each of these cases in turn.

i

t.\,: Case (1). This implies f=0. Then f(t)=k<t + m, but f(0)=pf(0) -
5%5 implies f(t)=m(pt+l), and we normalize by assuming m=1. Then (i) gives .

A%p2 =1,
or
L
s
The boundary condition at t = A gives us
- - -AYe PA
Bea+ 1= I—Lre B(A=T) (pre1yar = LBle (" (5r41)ePTar.
A?-1Y0 A%-1 Yo

This implies

- v v - ~ ha
YT PEAEAEM R FARA R S
) AR .. P R oy
EAPN R AN PR AR B

A
125:11&5;5%1 = JA(BT+1)epTd7 = [1eﬁ7] - JdeBTdr + JdeﬁTdT
(1-B)e 0 0 0 0

AeBA

Thus (A%-1) = A’l:E—. and substituting A? = L we get T
BaA+1 g2 e
(A+1)p? - AB - 1 = 0. This implies that

_ Ap/ATe4e(A41)
b= =Y
By assumption §8>0, and so we must have p=1.

l\
AT

But then W(s) =

7]
+
—

Thus case (1) is excluded.

November 22,

1985

..................
.....................................
""""""""""""

B e v gt At a e e
PR S Y e e e w T % e T T e

S teetwt ot a4ttt

PRI R Pl M A TR T



v K N T, W N SR R U POTRT RS WU R TR AT T W LT L T it 2%
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LY

L <

L]
\ Case (i1). In this case
2 [BA\2-1N
;\R f = eht + ae Rt with h':[&l-—l-
= A%
'_ For later reference we note this implies
2:;
e
P?." R3-1
29 A2z — . (10)
) hz_pz
N

We assume without loss of generality that R>0. Then the boundary condi-

tion (Sb) gives us
R - a*k = B*(1 + a), ox'a.-,22 (11)

T R+f°

Boundary condition (9a) gives

S S &) re-p(A-r).(erwWe-hf) i
0

A3-1
- LB B8 L[ (BRI
A%-1 0
__1-p -BA.[e(h+B)A+ a'e(ﬁ-h)A .1 _ _a ]
T € R+B B-R R+B Pk
= 1_‘£-e-ﬁA. [e(h+B)A_ Q(B-h)A]
A%-1 k+B ke )
using (11). A little algebra gives us
Ak _R-B. _-Ak _ 1-B_ 1 [kA _ R4 B
he (e = o) 4 pugeRd 4 Ry L LB (RA | kA T
A?-1 R
so RS
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R + Bocoth(k-d) = 1B~

A*-1 B

I&‘ N

Substituting for A? from (10) we get A
Ay

3_p2 .

0 = k + Becoth(k-4) + E—E- K

p+1 N

= kR + Pecoth(k-4) + (k+p)-h—'ﬁ
p+1

.‘ .,‘
: s '
l' " N

"
AR

= k + Becoth(k+A) + (k+B)+(tL - 1)
B+l

J

>0

e

since k>0, A>0, and therefore coth(kA) > 1. This is a contradiction,

and thus case (ii) does not occur.

Case ({1i{). In this case

S L R A s LT TR

DAL S
4

e e

£(t) = cos(ut+p) with w? = -(LZ}L:-.—I). (12)

Q2
Note that this definition of w® implies A2 =1 + l;Lz Evaluating the
W +p

initial condition in (9b) we see f’(O) = Bf(0) implies ~wsin(y) =

Pcos(¢). wpO implies cos(y)#0. So tan(y) = -g and therefore

—2 __ . -sin(¢) and

w = cos(y) |. (13)
(Bzwz)% (Bzwz)%

The initial condition in (9a) gives

cos(wd + ¢) = f(A) = L;L e.BA reBTcos(w + ¢)dr
N-1

- I_-E_G-BA.[wsin(Aww) + Becos(Awt+y) _ ws?nw) +ﬁcos(¢)]
AZ-1 e Pa(u34p?) w+p?

- I_-L[wsln‘whﬂ + Becos(duwty) e-BA_usin(-p) +jcos(w)]
A2-1 w342 w342
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1 » - - - e - - .‘..‘\
) el
oS
I u
: 1-6 1 X
N = . m [cos(¢)sin(wi+p) - sin(y)cos(wA+y) _:\:
7 A-1 (B*7) o
° - '.r_: y
o -e BA(cos(w)sin(w) - sin(¢)cos(¢))] S
' I L E stg(uA% E;.
R A1 (BP) RN
A\
: oY
2 Y
. Expanding the left hand side, we get Ak
" cos(wA)cos(y¢) - sin(Aw)sin(y) = (lfp)’in(gAl% 5&;‘
(A%-1) - (o*+p%) R
N Combining this with the conditions from (13) we get t::i
)
' wecos(wd) + Besin(wd) {1-B)sin(wd) (14) L
A 2
. A%-1
- If cos{wA)=0, (14) implies that B = lie—. and therefore AZ = %u -
Ac-1 '
o _p2 _R2 el
o But we must also have from (12) A* = 1 + l—g——. and so + =1 + 128 . ;:j
o5 BT s i
A e
- which implies w® = B. We conclude that cos(w)=0 only if w® = B. Con- G
- \,n‘_
! versely, if o® = B, (12) implies A? = ‘-13- and so (14) implies wecos{wd) =
g L
:§ 0. Then cos(wd) = O since we have assumed w#0. So cos{wd) = O is equi- S
.‘_: o
& 2 2n+1
5 valent to w° = f. But cos(wA) = 0 amounts to wA = = an then from -;;f
' (13) tan(y) = -VB. So A? = 1_1. [—2A—]2 is an eigenvalue when
o B o? (2n+l)w
2 2
o B = [ngillIJ . Ve see below that when B = EE%] and we also have
E‘ Z% > 1, 1t is the largest eigenvalue.
N If cos(wA)#0, then we have
= _ 25
1 w= -(B—LL)tan(wA) = Mtan(om).
K A%-1 A%-1
e e
. Substituting from (12) for (A*-1) we get ?::
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W= gizg-tan(wA).

1+

Since cos(wd) # O implies w® # B, we conclude

tan(wa) = {L2BJe | (15)
w3-p .

For given B we can numerically solve this equation for w, finding mulci-

ple solutions. From the definition of w® in (12), these solutions give
2 2

1+ 1-8 - +1 ]

W22 242

the one among solutions to the equation for w that gives the largest

us the eigenvalues of VYV via A% = Ve wish to pick

eigenvalue. We see that there are two cases:

. If B<1 then we should pick the smallest solution for v (w=0 has
been excluded by our consideration of case (iii)).

L If p>1, we should pick the largest solution for w, but one can
see from Fig. 1 that there is no upper bound on solutions to (15).
Thus there is an infinite sequence of eigenvalues approaching AZ=1
from below. (This means that V'V s not compact, as we already

knew.)

As pointed out above, the spectrum of V*V is the set of eigenvalues
augmented possibly by {(1}. Thus for p>1, the spectral radius of ART
1. and therefore lIVil=1.

For B<1, we also have l€a(V*V). but this does not affect the spec-

tral radius since the largest eigenvalue is greater than 1. It {s easy
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to see that the eigenvalues of V'V are contained in U‘:utn'l) for p>1,

and in (I.A;ax] for p<1.

Since the open loop system has sensitivity of norm 1 for the case
B > 1, the optimal sensitivity is attained by H=0 in (1). that is, zero
feedback. In other words, Wi, = 1 when B > 1, and this is the infimal
sensitivity according to the above argument. (We note that W is not
inner. For non-compact operators, minimal dilations are not necessarily
unique or inner.)

To summarize the situation, we have found two cases of interest:
either there is an eigenvalue of Vv equal to the norm of T, or HTI=1,
and we can find a sequence of eigenvalues of V‘V approaching 1. This
will be used below to compute the minimal dilation of T to ¥° in the
first case. In the second case W itself is a minimal dilation of T to
*.

For later reference we note that, using the definition of A? from

(12). (14) implies

B = oouosin(wld) - cos(wd)
- sin(wA) + U'COS(&)A)

(16)

The solutions of the equation tan{wd) = -&:E& can be characterized
W -p

graphically as indicated in Figure 2. (Notice that we always have B5>0.)
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y=tan(wA)

gives largest
eigenvalue

Figure 2. Graphical solution of (15).

From this drawing we can see that the case B = 12%%11!]2 corre-
sponds to the coincidence of vertical asymptotes of y = tan(Aw) and

2
y= 115212“ 1If B = [5%- the asymptote will be the one closest to the
w-p

origin for tan{Aw). Then the other eigenvalues will correspond to larg-

er values of w, and thus will be smaller when § < 1.

Calculation of optimal sensitivity for $<1. As part of this solu-
tion for <1 we obtain the eigenfunction f for the largest eigenvalue of
V'V. This f is a maximal vector for Y. and so we can follow the method
in Sarason to compute the minimal dilation of T to ¥°.

The following applies to all eigenfunctions f, but gives us the
minimal dilation of T only for the case where f is a maximal vector for
Y.

Let wg be a solution to (15). When wy corresponds to a maximal

vector, according to the proof of Proposition 5.1 in [Sarason 1967],

~

T/UTH, will be interpolated by an inner function given by Tf where .

A
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e
g
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4
o
denotes Laplace transform. In any case, the formula below for I; will ;i;?
f S
be valid. First we calculate e
NG
Vf = Jt[é(t_T) + (l-B)e—B(t-T)]cos(w°T+¢)dT ::{:
0 N
atal
= cos(wgt+y) + (l—ﬁ)J¢e_ﬂ(L-T)cos(wor+¢)d7 Rﬁw
° ey
= cos(wot+p) + (1-p)§iﬂlﬂn£lk £t~n
(wo?+8%)
Then
TF _ 2(VF)

;o €(f) N
1+ 1B . _#[sin(ugt)-(u(t)-u(t-4))] ]
(@o?+82)*  lcos(uot+e)e (u(t)-u(t-4))] 3
-1+ —(1=B)lsin(wgt)« (ult)-u(e-4))] (a7 oK
#[(wocos(wot J+Psin(wot) ) (u(t)-u(t-4)})] b s

“sA L Osmto) T 8(siie)

£(sin(wgt)*(u(t)-u(t-4))] = 1-: 2i

1 [l_e-(s-two)A l_e-(s+tw°)A] ;fj
2t s-tUQ S+f.U° 'E:-.j
21UQ - e-SA[-(S"'in)e -tUOA] ,:}

21 (s*+wd)

+(s-iwg)e

_wg + e-SA[s-sin(qu)+w°'cos(wnA)] ;é:j
y e e —

-si

o Sls-tog) * S(oring)

s 2 o
_~(s-twg)A _~(s+twp)A <
1-e 0 + 1-e o

#[cos(wot)* (u(t)-u(t-4))] = 122

1
= 5‘(
s-lwg s+iwg

v

e e l
cfetel
e
2 L.

'
Loa o ¢

. 8= e-SA[s~cos(woA) - wg*sin{wgd)] (19)

s?+wd

1

v

. 'E' -"....

SN
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Using (18) and (19) in (17), we get

=1+

" % TR e w
-3
sl

Y

e

L

Ifl -

.::. (1-B)[—wo+ e SA°(s-sinw°A+w°coswoA)]

e - -

2 wo[~ste sA(s'cos:«.:(,A-mc,siru.:ot\)] + Pl-wete SA(s-sinm,,,M(.:ocosm.,A)]

s A ::..-‘::
,4_?: =1+ {(1-f)[~wo+ e 5% s+ sinugd+wocoswod)] (20) :.':_:‘_.
:‘_:’.: -wo(ﬁ+s)+e-SA[s(wocoswoA+B sinwgd )+wg (Bcoswod-wesinwgd) ] ::f::::"

e
[}
B Bk,

T -
S
?

When f is a maximal vector for V. (20) is the optimal weighted

2’
f

N
aal A

"
6

212
sensitivity, and Ill = }‘r:ax' We can then compute the optimal feedback
f

: 2 'l‘ -.l o 4
. LA o
/] AU
P W0t
. [ Sl
e .

compensator for the case § < 1 as in the next section.
1

Remark: As A =20, A2 =1, and as A »®, A2 o = This can be
—_—— max max
seen as follows: From Figure 2, as A » 0, wa increases. For large wg.

B ant (PSS

Rt

(1+8)wg - 1+8

As A-0, tan(Aw)X¥Aw over an increasingly larger interval.

w3-p o
Thus the smallest solution of (15) is given with increasing accuracy by PO
2 3
to x LB, o w’zlz—ﬂ. Since A? = “*L ye find a2 x B*4 = 1 When L
© w?+p 1+p+p3A e

2 1 2. 148 1 N

A > o we see from Figure 2 that wo = 5. This gives A\° 2 =—= = =. e
B B+B” " B
SR
Calculation of Optimal Feedback Compensator for B<1. _—f
The optimal weighted sensitivity in (20) can be written : -¢
- - v
~ Wo[-ste SA(s-coswoA—wosinwoA)) + e SA(:a-sim.mzh't.m<:os¢-’c,A) - wg g
X = T
wo[-s+e-SA(s-coswoA-wasinwoA)] + P[~wote SA(s-sinwoAmocosqu)] e

Faes
F_
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s-(-wo-be-SAwocoswoAﬁ-e-SAsinwoA) + UOe-SA(coswoA-wosinqu) - wo

s-(-wo+e-SAwocosqu+e_SABs1m°A) + woe-SA(BcoswoA-wosimoA) - Puwo

where wo is the smallest solution of (15). We want to find the feedback

F which results in this weighted sensitivity. We have X = W( 1-PQ) and

=3 = XX
F'I-PQ' so F = <.

Taking )’E = g. we get I? = WD:N = QILDZS*'B‘)‘N. with
D PN (s+B)e ~ PoN
b -sA -si S -sA -sA
N = s(kie = -wo) + kze - wo and D = s(kae ~ -wg) + R4e - Bwo
-
_-., \l
- (s+1)[s(hae-SA-Oo)-#hae-SA-ﬁuo] - (s+B) [s(hxe_SA-wo)+hze-SA—wo] (E:
F= R
Poe-SA(s'bB) [s(h;e-SA-wo) + kze.sA - wo] '-:'.jf':'.j
AR
-sz(h;-ha)e-SA+s [kae-SA+h4e-SA—hze-SA-Bh;e-SA)] + [h4e-SA-phze-SA] ]
= , Rt
Poe_SA' [—sz(wo-hze—SA)'*s(th e-SA-Bwo+hze-SA—w°)+B(hze-SA-wo)] o
with )
Ri = wocoswod + sinwoA, k2 = wocoswod - wasinwod
Rs = wocoswod + PsinwoA and ke = woPcoswe - wasinue.
Substituting for the hts we get
2 1
F= .
Poe s4
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AL AR R e A e e e

SE (1-B)sinwcA(wi+s?)

-y

—sz[s1nmoA+wocoswoA-woeSA]+s[(wg-B)sinwoA-(B+1)wocoswoA+(ﬁ+1)woeSA]+

t
4

I f?l.

'i

4,
P

&

Buo[uosinwoA-cosqu+eSA]

‘,

f.l’t'fo"f
'Eéﬂﬁ.

r

—
.
DAY
~
La

Poe-SA

(1-B) sinwoA(wd+s?)

-s?(sinwoA+wocoswol)+s[ (w3-B)sinwcA-(B+1)wocoswod ]+ i

Bwo(wosinwoA-coswod )+ eSAwo[sz+(B+l)s+B]

= 1 o,
Poe-SA( sinwoA+wocoswod) L
(1-B) sinwod (wi+s?)

wasinwoA~wocoswod sinwoA+wgcoswod ugsinmoA—wocoswoA E'”
-s“ + s+p. >

sinwoA+wocoswol sinwod+wocoswod sinwgA+wocoswod

sA s®+(B+1)s+B . e

o,
+ woe E" "

sinwoA+wocoswol

Using (16) we get

(1-B)sinwoA(wi+s?) E—-

)
[}

l"o[(s1mmA#-t.n:casc.:oA)(--s’ﬂi’)e-SA + wo[s’+(ﬁ+l)s+ﬁ]]

= kﬂ-simob}’;l .
@o
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2, 2 k.

" s +wo 1 ":.'R

P.p: \‘, N

I:_. ‘ sz+(B+1)s+B 1+e_sA sinwoA+wocosuwol B3-s2 :;_.:}

v Wo Sz“‘(ﬁ*'l)S'*B ::_::

1-8 sinwod+wocoswold .g.js

Taking {1 = To-sim.aoA and {2 = oo (the expression for g

o

(2> is simplified below) this is ,C‘:

-

~ oy, STwd 1 %’

F = (l'PO . . ) > 3 . _-:-“.

s“+(p+1)s+p 1+ e-sA.cz. B -~s _.._.: -

s®+(B+1)s+p

which can be realized as shown in Figure 3. -'j"',

u Ly STl Fu i

- » C1+Po” > et

2 J s2+(B+1)s4B -

= 2_g2 "

:: e sA P EZ‘L .:

s%+(B+1)5+B o

Figure 3. Realization of Optimal Compensator L"

Since the optimal PQ is independent of the outer part of P, Q and E‘_

thus F will in general be improper. It is necessary to find a proper Q SO

for the compensator to be physically implementable.

: Proper Approximation of Optimal Feedback Compensator. L'

The only procedures in the literature for this purpose seem to be

E

: given in [Zames and Francis 1983, p. 591] and [Vidyasagar 1985, p. 178]. =

:::',: However the procedure in [Zames and Francis 1983] requires the .E:'-'.

- s

-.}2

L
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evaluation of the term Bz(ﬂ). where Bz(s) is the Blaschke product formed
from plant zeros. In our case there is no Blaschke product involved,
but rather a singular inner function. If we interpret Bz(s) to be this
inner function, Bz(ﬂ) is not defined. In fact this procedure does not
work for our case.

The procedure in [Vidyasagar 1985] does not work for our case
either. The essence of the difficulty ts the same as in the
Zames-Francis procedure — the inner factor of the plant is not contin-
uous at infinity.

An explanation of why these techniques do not work is given in
[Flamm 1985b]. The analysis there does suggest a means to accomplish
the approximation. A full discussion will appear in Part III of this
report, but the graphical argument presented in [Flamm 1985b] to show
why the other procedures do not work motivates the following approach.

The essential idea is to roll-off the ideal Q-parameter with a
transfer function for which the Bode magnitude plot has slope less than
1, so as to limit the phase deviation due to the roll-off, until suffi-
cient attenuation has been obtained. This this can be accomplished, for
example, with a lead-lag network which approximates such compensation by
having average slope magnitude less than 1.

We note that any stable Q-parameter results in a stable closed loop
system, so that this roll-off technique preserves stability just as the

procedures for the isolated right half plane zero case do.
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hY
e
. Stability of Optimal Feedback Compensator.

The compensator is of the form

N ;-;1‘.-_3
N
29 . PN -g 2 2 - -'.‘...'
a F=C(1°*Py - S *wg . l-sA . .':_-.""
';: (s+B) (s+l)+e “"(2(s-B) e
» Since Py is minimum phase by assumption, the problem amounts to deter- ] .4
- mining the stability of the term -l-sA . Equivalently, we "Qi
":"_: (stl)+e " (2(s-B) e
ask whether l+e—3A§3§% has zeros in the right half plane. We answer :'.:‘_:::;
this question by proving that 1+e-SA§z-:—:-% has finitely many zeros in the bo-q
A
Z:f'_ closed left half plane, and then conclude by appealing to Picard's theo- :__“,.'_:j
rem that 1+e-SA§2§% has infinitely many zeros in the right half plane. ;i::fg
‘_: - ..'\,:1
i First we note that |e SA| > 1 for s in the left half plane, and u
» - s
e le SA| < 1 in the right half plane. Now all zeros must satisfy ?
N R
o -Re(sd), |s-B 1 d e
M . = \ theref 11 closed left half pl
* e e T an erefore all clos e plane zeros e
s=B 1 -
. satisfy pve) < m So all closed left half plane zeros lie on or A
o : sBl_ 1
::’-. inside the  intersection of the ellipse sii| = TG with the closed left :::‘_.‘
« 7 N
half plane. See Figure 4. el
S T e
o -1 N
:‘.:‘ 2 ‘;':‘:
e :{.-t'
< o
-, ::-“
'S o
e Figure 4. Region for possible left half plane zeros. t:
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-! Thus all closed left half plane zeros lie i{n a compact region, and
o

:1 we conclude from analyticity that there are only finitely many in that
h: region. Picard’'s theorem tells us that there are infinitely many zeros,

so that we must conclude that there are infinitely many in the open
right half plane.
We can ac'tually get more detailed {nformation about the distribu-

tion of the right half plane zeros without much more troﬁble. As stated

s=B 1
above, the right half plane zeros must satisfy e > T As

sB

|s| = =, - 1. Therefore as |s| -+ @, the zero set {(z,} approaches
s+l i
-sA 1 ‘ 1n|§z|
the line [e | = T which 1s the same as %e(s) = =32, and
9.(21) = (2n+l)w. Also, since right half plane zeros must satisfy
-::—? < 1 (by comparing distances from g and from the point -1}, we
=B -sd) Is=B] _ 1 sd
have |C.] e < |Cz2]. Then since |e | e ‘TEI" [e®*] < IC21.

and we conclude %e(s) < lﬂ%&l for these zeros.

The fact that H(s) = (s+1)+e-3A§3(s-B) has right half plane zeros
can also be obtained from results on the distribution of zeros of entire
functions. (See [Levin 1980] Chapter 7, §4. p. 323, Example 1.) For
our purposes it is more convenient to refer to the earlier work
[Pontryagin 1955].

According to theorem 6 in this latter paper it is sufficient to

show that the function G(y) = yecos(yd) + sin(yd) + {,°y has zeros which

.

L
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-

e
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wAn
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are not purely real.3 To see this all we need is to recognize that G
has infinitely many zeros. (To show this we can use theorem 3 in the

same paper.)} SettingG(y) = O we get

-

‘!
-yscos(yd) = sin(yd) + Cz°y. N
For real values of y, the left hand side of this equation has the lines :ﬂﬁf

&

Z = sy for an envelope. whereas the right hand side oscillates with

deviation 1 about the line z = {2°y. Since |{2] > 1.4 for some value y,

el -
v

there are no more real zeros for Iyl > Yo.
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3Theorem 6 says that if we evaluate H(s) on the imaginary axis, and R
split the resulting H(ly) (y€R) into real and imaginary parts,
H(iy) = F(y) + tG(y) with F(y) and G(y) taking only real values, “ln
then necessary and sufficient conditions for H to have all its zeros
in the left half plane are that (1) F and G have only real zeros,
that (i1) these zeros alternate, and (1ii) for at least one value of
y. G'(y)F(y) - F'(y)G(y) > 0. Thus we need only show that G has a

iy complex zero to establish that H has a right half plane zero.

*From (15), s‘::“‘ = :+p coswoA. Using this in the defini-tion of (,. Lt

w3-B
I 143 |’1+u3 2
- {3 = —coswgd. Therefore 3= . =
. w3-B Lug-B 1+tan®02A  wZ+p

have used (15) to substitute for tan{wgd), and simplified.

1 wa+l

, where we
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